

Miriad-Python Manual

Welcome to the miriad-python manual. If you’re unfamiliar with how
miriad-python works or what it’s for, try starting at the
introduction. For more information about the
miriad-python project, including installation instructions, issue
reporting information, releases, and academic references, please see
the miriad-python website [https://www.cfa.harvard.edu/~pwilliam/miriad-python/].

Contents

	An Introduction to miriad-python

	Loading and Processing MIRIAD Data
	High-Level Access to MIRIAD Data: miriad
	Visibility Datasets

	Image Datasets

	miriad API Reference

	Low-Level Access to MIRIAD Data
	mirtask API Reference

	MIRIAD Data Utilities: mirtask.util
	Antpols and Basepols

	Utilities for Writing Tasks

	Linetypes

	Baselines

	Polarizations

	Julian Dates

	Optimizers

	Coordinate Manipulations

	Fast-Fourier-Transform Imaging

	Executing MIRIAD Tasks: mirexec
	Creating Task Instances

	Setting Task Parameters

	Defining Your Own Task Classes

	mirexec API Reference
	Generic Task Class

	Specific Task Classes

	Setting up Subprocess Environment

	Utility Classes

	Writing Your Own MIRIAD Tasks
	MIRIAD-Style Argument Handling: mirtask.keys
	Handling keywords in miriad-python

	Keyword Types

	Keyword Formats

	Integration with the UVDAT Subsystem

	mirtask.keys API Reference

	The UVDAT Subsystem for Reading UV Data: mirtask.uvdat
	mirtask.uvdat API Reference

	Utilities for Command-Line Programs: mirtask.cliutil

Indices and Tables

	Index

	Module Index

	Search Page

Colophon

This documentation describes miriad-python version 1.2.4,
implementing version 1.2 of the API. It was generated on
June 26, 2023. This documentation is created using Sphinx [http://sphinx.pocoo.org/].

An Introduction to miriad-python

miriad-python is a framework for interacting with the
MIRIAD [http://bima.astro.umd.edu/miriad/] radio interferometry
package via the Python [http://www.python.org/] programming
language. It offers three main groups of tools, used for:

	reading and using MIRIAD data files in Python.

	executing existing MIRIAD tasks.

	writing your own MIRIAD tasks in Python.

You should get started by reading about high-level access to
datasets.

Loading and Processing MIRIAD Data

miriad-python deals with MIRIAD data on two levels:

	There is a lightweight high-level class, miriad.Data, that
allows you to easily store references to datasets, check whether they
exist, rename them, and so on.

	There is a lower-level module, mirtask, that lets you open up
datasets and access at their contents directly. Doing so successfully
requires a familiarity with the details of the MIRIAD data formats,
which this documentation does not attempt to provide.

If you’re just getting started with miriad-python, it’s important to
understand the high-level miriad.Data class but not necessary
to read about the low-level mirtask module just yet.

	High-Level Access to MIRIAD Data: miriad
	Visibility Datasets

	Image Datasets

	miriad API Reference
	Dataset Classes

	Tracing Task Execution

	Low-Level Access to MIRIAD Data
	mirtask API Reference

	MIRIAD Data Utilities: mirtask.util
	Antpols and Basepols
	Textual Conversion

	Data Conversion

	Utilities for Writing Tasks

	Linetypes

	Baselines

	Polarizations

	Julian Dates

	Optimizers

	Coordinate Manipulations

	Fast-Fourier-Transform Imaging

High-Level Access to MIRIAD Data: miriad

On the commandline, you refer to datasets by their filenames. The
miriad module provides two fundamental classes,
VisData and ImData, which analogously let you
refer to datasets in a Python program. Instances of these class are
lightweight and provide features to make it easy to perform common
operations on your data.

To instantiate one of these classes, just call the constructor with
a filename as an argument:

from miriad import VisData, ImData
vis = VisData ('./fx64c-3c147-1400')
im = ImData ('./residual.rm')

It’s important to understand that these objects are references to
datasets, and as such the underlying file doesn’t have to exist when
you create the object. Also, creating one of these objects is a very
cheap operation.

Both miriad.VisData and miriad.ImData are subclasses of a more
generic class, miriad.Data. Instances of this class have methods
and properties that provide common functionality regarding MIRIAD
datasets. One set of functionality is checking basic properties of the
dataset on disk:

	Data.exists to see if it exists on disk.

	Data.mtime to check when it was last modified. This requires
that the dataset exists; the variant attribute umtime
returns unconditionally. (Hence the “u” prefix to its name.)

	Data.realPath() to get its canonical filename.

You can also perform some basic operations. (From here on out, we will
drop the ‘’Data’’ prefix in the names we show. Also, note that you can
click on the link associated with all of these function or property
names to access the more detailed reference documentation for that item.)

	moveTo() renames a dataset.

	copyTo() copies it.

	delete() deletes it.

	apply() configures a MIRIAD task object
(mirexec.TaskBase) to run on this dataset
via the mirexec subsystem. See Executing MIRIAD Tasks: mirexec for more
information. See also the verbose variant
xapply().

You can create more Data instances with filenames
similar to existing ones:

	vvis() creates a new VisData
instance referencing a similar filename.

	vim() creates a new ImData
instance referencing a similar filename.

And you can open the dataset with open() to get
access to its contents. See Low-Level Access to MIRIAD Data for more information.

You may also wish to enable tracing of MIRIAD task execution in
miriad-python by calling basicTrace(). There are a few more
rarely-used members of Data not mentioned here that are
documented in the API reference below.

Visibility Datasets

The VisData subclass of Data has
additional routines specifically useful for UV data:

	catTo() runs uvcat on a dataset
to produce a copy of it.

	averTo() runs uvaver on a dataset
to produce an averaged copy of it.

	lwcpTo() creates a “lightweight copy” of a
dataset, duplicating its metadata but not the visibilities,
which makes certain common operations much faster.

	readLowlevel() opens the dataset directly
for lowlevel access to the visibility data.

Besides these routines, the VisData subclass
implements several generic methods specified in Data,
so you should always create a VisData instance when
you know that you’re referring to a visibility dataset.

Image Datasets

The ImData subclass of Data is used
for referencing image data. It currently does not have any routines
specifically applicable to image data, but it implements
several of the Data methods correctly, so you should
always create a ImData instance when you know that
you’re referring to an image dataset.

miriad API Reference

This section presents a detailed API reference for the miriad
module.

Dataset Classes

Tracing Task Execution

The miriad module also provides infrastructure for tracing task
execution and operations on datasets.

	
miriad.launchTrace

	Traces the execution of commands.

Should be a callable or None. Will be called by
trace(), which is invoked every time a MIRIAD task is
executed via mirexec or a dataset is renamed, copied, or
deleted. launchTrace should take one argument, which will be a
list of strings representing the commandline that is being invoked.
If none, trace() has no effect.

The function basicTrace() sets launchTrace to a simple
default.

Low-Level Access to MIRIAD Data

Is awesome. But the documentation will be written a bit later.

mirtask API Reference

MIRIAD Data Utilities: mirtask.util

The module mirtask.util contains miscellaneous utilities for
working with MIRIAD data. It is located in the mirtask package because
some of these utilities make calls into the MIRIAD subroutine library,
unlike the general, pure-Python tools in the miriad module.

Antpols and Basepols

Docs here.

Document FPOL_XYRLIQUV.

Textual Conversion

Data Conversion

Utilities for Writing Tasks

Linetypes

Baselines

Polarizations

Julian Dates

Optimizers

Coordinate Manipulations

Fast-Fourier-Transform Imaging

Executing MIRIAD Tasks: mirexec

The mirexec module makes it convenient to launch tasks
from within Python. The simplest invocation looks a lot like
what one would run on the command line:

from mirexec import TaskUVFlag
TaskUVFlag (vis='fx64a-3c286-2700', select='ant(26)', flagval='f',
 noquery=True).run ()

If you need them, however, the mirexec module provides
more sophisticated facilities allowing you to retrieve the output
of a task, run many tasks in parallel, and so on.

Running a MIRIAD task in mirexec requires three steps which,
as shown above, can often be condensed into a single line of Python:

	Create an instance of a “task” class corresponding to the task
you wish to run.

	Set the task keywords and options.

	Call a method that actually launches the task.

The following code is equivalent to the first example, but breaks
down the steps more explicitly:

from miriad import VisData
from mirexec import TaskUVFlag
v = VisData ('fx64a-3c286-2700')
Create instance:
t = TaskUVFlag ()
Set some keywords:
t.vis = v
t.select = 'ant(26)'
t.flagval = 'f'
Set some options:
t.noquery = True
t.hms = False # i.e., do *not* specify the "hms" option
Launch task.
Executes: uvflag vis=fx64a-3c286-2700 select=ant(26) flagval=f options=noquery
t.run ()

Creating Task Instances

The TaskUVFlag class shown in the above examples is a
subclass of the TaskBase class, which provides a generic
structure for invoking MIRIAD tasks. The mirexec module defines
such subclasses for many, but far from all, of the tasks provided with
MIRIAD. It’s easy to create your own TaskBase subclass for
anything you need that’s not provided with miriad-python,
however. See below for more information.

The TaskBase class provides functions for setting keyword
arguments and actually invoking the task. For the full details, see
the detailed API documentation. Subclasses specify the name of the
particular task that is run and the keywords and options it accepts.

Task instances can be reused: you can create an object, set arguments,
and run it, then change some or all of the arguments and run it
again. Among other uses, this makes it easy to apply a task to several
datasets:

t = TaskUVAver ()
t.interval = 5
t.line = 'chan,800,101'
t.nocal = True
for v in listManyDatasets ():
 # The set() method returns 'self' for easy chaining of
 # method invocations.
 t.set (vis=v, out=v.vvis ('av')).run ()

Setting Task Parameters

You can set the task parameters in several ways: as a property on the
object, as in the example above, as a keyword argument to the object’s
constructor, or as a keyword argument to the object’s
set() method. The latter two forms are shown in
the example below:

from miriad import VisData
from mirexec import TaskUVFlag
v = VisData ('fx64a-3c286-2700')
This is equivalent to the previous example.
t = TaskUVFlag (vis=v, flagval='f', noquery=True)
t.select = 'ant(26)'
t.run ()
As is this.
t.set (vis=v, select='ant(26)', flagval='f', noquery=True)
t.run ()

Thus, the most succinct way to execute a task is to write something
like:

TaskUVFlag (vis=v, flagval='f', select='pol(yy)').run ()

The names and values of keywords in Python are mapped to command-line
arguments with the following rules:

	Keyword arguments have the same name in Python as they do on the
command-line if possible. If the MIRIAD keyword is a Python
keyword (e.g., “in”), the keyword is accessible in Python by
suffixing it with an underscore (“in_”).

	In most cases, the textual value of each MIRIAD keyword is the
stringification of the Python variable assigned to it. If the Python
value is None, the keyword is not supplied on the
command-line.

	However, if the Python variable assigned to the keyword is a
non-string iterable, the textual value of the keyword is the
stringification of each item in the iterable, joined together with
commas. For instance, if you run:

from mirexec import TaskMfCal
TaskMfCal (vis=foo, line=['chan', 60, 15]).run ()

the line keyword of mfcal will be chan,60,15.

	The keyword “options” isn’t used directly. Instead, each possible
option to a task is a separate field on the task object that should
be set to a bool. The option is supplied if the field is
True. There are rare tasks that have an option with the same
name as a keyword; in those cases, the keyword is the one controlled
by the property on the task object.

There are several functions that will actually execute the task. Each
has different uses:

	run() executes the task and waits for it to
finish. The task output is sent to the stdout of the Python program
and the task input is set to /dev/null.

	snarf() executes a task and waits for it to
finish. The task’s output to its standard output and standard error
streams are returned to the caller.

	runsilent() executes the task and waits for it to
finish. The task output is sent to /dev/null.

	launch() starts the task but doesn’t wait for it to
finish; instead, it returns a MiriadSubprocess instance
that allows interaction with the launched subprocess.

	launchpipe() starts the task but doesn’t wait for it to
finish. The output of the task is redirected to pipes that can be
read using the MiriadSubprocess instance.

	launchsilent() starts the task but doesn’t wait for it to
finish. The output of the task is redirected to /dev/null.

Defining Your Own Task Classes

In most cases, it’s straightforward to define your own task class. To
wrap the task “newtask”, you should write something like:

from mirexec import TaskBase

class TaskNewTask (TaskBase):
 _keywords = ['vis', 'line', 'flux', 'refant']
 _options = ['nocal', 'nopass', 'mfs']

def demo (vis):
 t = TaskNewTask (vis=vis)
 t.flux = 1.0
 t.nocal = True
 t.run ()

The name of the task executable is inferred from the class name by
stripping off the prefix “Task” and lower-casing the rest of the
letters. If this heuristic won’t work, you can specify the task name
explicitly by setting _name on the class:

from mirexec import TaskBase

class DifferentNames (TaskBase):
 _name = 'newtask'
 _keywords = ['vis', 'line', 'flux', 'refant']
 _options = ['nocal', 'nopass', 'mfs']

If you’re feeling fancy, here’s a less typing-intensive way of
generating arrays of short strings:

from mirexec import TaskBase

class TaskNewTask (TaskBase):
 _keywords = 'vis line flux refant'.split ()
 _options = 'nocal nopass mfs'.split ()

mirexec API Reference

This section presents a detailed API reference for the mirexec
module.

Generic Task Class

	
exception mirexec.TaskFailError(returncode, cmd)

	Signals that a task exited indicating failure, though it was
able to be launched.

TaskFailError may be a subclass of
subprocess.CalledProcessError, if such a class exists. (It
was introduced in Python 2.5.) Otherwise, it is a functional
equivalent to that class.

Instances have an attribute returncode indicating the exit code
of the task. This will be nonzero, since zero indicates success. As
far as I know, all MIRIAD tasks exit with a code of 1 unless they
die due to a POSIX signal (in which case, the exit code is
conventionally the negative of the signal number).

Instances also have an attribute cmd which is a string version
of the command line that was executed. The arguments are joined
together with spaces, so there’s potential for ambiguity if some
of the argument values contain spaces.

Specific Task Classes

We try to keep this list up-to-date, but it may not be complete. If
you discover a wrapped task that isn’t documented here, please notify
the author. As mentioned above, it’s straightforward to wrap a new
task yourself: see Defining Your Own Task Classes.

Setting up Subprocess Environment

Utility Classes

Writing Your Own MIRIAD Tasks

There are several things that you need to do to write your own
MIRIAD tasks that blend in with the standard MIRIAD tasks.

	MIRIAD-Style Argument Handling: mirtask.keys
	Handling keywords in miriad-python

	Keyword Types

	Keyword Formats

	Integration with the UVDAT Subsystem

	mirtask.keys API Reference

	The UVDAT Subsystem for Reading UV Data: mirtask.uvdat
	mirtask.uvdat API Reference

	Utilities for Command-Line Programs: mirtask.cliutil

MIRIAD-Style Argument Handling: mirtask.keys

Like other UNIX programs, MIRIAD tasks accept input parameters from
the user via command-line arguments. The way in which MIRIAD tasks do
this, however, is different than the usual UNIX way.

Each task defines a number of “keywords”. The MIRIAD keyword-handling
subsystem can be used to obtain zero or more values of each keyword
from the command-line arguments. The values of a given keyword do not
necessarily all have to be of the same type. The user specifies the
values of these keywords on the command-line with an assignment
syntax:

invert vis=3c286.uv map=3c286.mp imsize=824,724 slop=0.5 select='ant(1,3),pol(xx)'

Here, the vis keyword has a single string value (interpretable
specifically as a filename), the imsize keyword has two integer
values, and the select keyword has two string values. (Note that the
keyword-handling routines process parentheses in string-valued
keywords and do not consider the keyword to have the values “ant(1”,
“3)”, and “pol(xx)”.)

Boolean-valued keywords are called “options” and are implemented by an
options pseudo-keyword:

invert options=mfs,double

Here the options mfs and double have True values while
all other options are False.

Handling keywords in miriad-python

Tasks in MIRIAD obtain the values of keywords in a procedural way. In
miriad-python, keywords are generally specified declaratively and
their values are obtained automatically, although there is support for
the more general procedural approach.

To parse arguments in a miriad-python task:

	Instantiate a KeySpec object.

	Specify the keywords your task accepts.

	Use the KeySpec.process() method to obtain a data structure
populated with the settings for all keywords based on your
specification.

Here’s a simple example:

from mirtask import keys

ks = keys.KeySpec ()
ks.keyword ('param', 'd', 0.25)
ks.keyword ('mode', 'a', 'deconvolve')
ks.option ('verbose', 'noop')

opts = ks.process ()
if opts.param < 0:
 die ('"param" must be positive, not %f' % opts.param)
if opts.mode not in ('deconvolve', 'stirfry'):
 die ('Unknown operation mode "%s"' % opts.mode)
if opts.verbose:
 print "Being verbose starting now!"

The methods on KeySpec to define keywords are:

	keyword() defines a keyword that takes a single,
typed value, with a default if the keyword is left unspecified.

	mkeyword() defines a keyword that takes multiple
values of the same type.

	keymatch() defines a keyword that takes on one or
more enumerated values with minimum-match string expansion.

	option() defines one or more options.

	custom() defines a keyword that is handled in a
custom way by the caller.

The object returned by process() has an attribute
for each keyword defined using the above functions.

	For keywords defined with keyword(), the attribute is
equal to the user’s provided value or the default.

	For keywords defined with mkeyword(), the attribute
is a list of the values provided by the user, with the list being
empty if the user provided none.

	For keywords defined with keymatch(), the attribute
is a list of the values provided by the user expanded out to their
full values if the user abbreviated any. As above, the list may be
empty.

	For options defined with option(), the attribute is
either True or False.

	For keywords defined with custom(), the attribute is
whatever value was returned by a user-specified routine.

If the user-specified values do not match the expectations defined by
the specification (e.g., a keyword that should be integer-typed is
passed the value “abcd”) then a MiriadError is raised
in process().

Keyword Types

Keyword types in MIRIAD and miriad-python are identified by single
letters. The following types are available:

	Character

	Description

	i

	(The character is the lower-case letter i.) An integer value.

	d

	A floating-point (“double”) value.

	a

	A character string value.

	f

	A filename value. These are essentially treated like character
strings, but there are special hooks in the MIRIAD processing code
to expand out shell glob patterns into multiple values.

	t

	A time or angle value. These are parsed according to one of several
formats, described below. The output is always a floating-point
number but its meaning depends on the parse format.

Keyword Formats

Keywords describing a time or angle can be parsed according to one of
several formats. You must specify one of these formats when declaring
the keyword.

	Name

	Description

	dms

	The argument is an angle measured in degrees, written as
“dd:mm:ss.s” or “dd.ddd”. The output is the angle in radians.

	hms

	The argument is an angle/time measured in hours, written as
“hh:mm:ss.s” or “hh.hhh”. The output is the angle/time in radians.

	dtime

	The argument is a day fraction, i.e. the portion of a day that has
elapsed at that local time. The user can provide it in the format
“hh:mm:ss.s” or “hh.hhhh”. The output is the day fraction, a number
in the range [0, 1].

	atime

	The argument is an absolute time, specified as either “yyMMMdd.ddd”
or “yyMMMdd:hh:mm:ss.s”, or as an epoch, “bYYYY” or “jYYYY”. The
output is in Julian days.

	time

	Either an absolute time or a day fraction. The output is either a
Julian day value or a day fraction.

Integration with the UVDAT Subsystem

The keyword subsystem can integrate with MIRIAD’s UVDAT
subsystem. This integration is necessary because the UVDAT subsystem
uses the MIRIAD keyword-handling routines to obtain settings for UV
data selection, whether calibration should be applied, and so on.

If your task does not use the UVDAT subsystem, you need take no
action.

If your task does use the UVDAT subsystem, you must call
KeySpec.uvdat() while defining your keywords. When doing so, you
specify processing options that will be passed to the UVDAT
subsystem. See the documentation of uvdat() for more
information.

mirtask.keys API Reference

This section presents a detailed API reference for the
mirtask.keys module.

The UVDAT Subsystem for Reading UV Data: mirtask.uvdat

Foo.

mirtask.uvdat API Reference

This section presents a detailed API reference for the
mirtask.uvdat module.

Utilities for Command-Line Programs: mirtask.cliutil

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 mirexec	
 Execute MIRIAD tasks from Python.

 	
 	
 miriad	
 Talk about MIRIAD datasets naturally in Python.

 	[image: -]
 	
 mirtask	
 Open and manipulate MIRIAD datasets

 	
 	
 mirtask.keys	
 Process task arguments in the MIRIAD style.

 	
 	
 mirtask.util	
 Utilities for working with MIRIAD data

 	
 	
 mirtask.uvdat	
 Read in UV data with generic preprocessing options.

Index

 L
 | M
 | T

L

 	
 	launchTrace (in module miriad)

M

 	
 	mirexec (module)

 	miriad (module)

 	mirtask (module)

 	
 	mirtask.keys (module)

 	mirtask.util (module)

 	mirtask.uvdat (module)

T

 	
 	TaskFailError

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Miriad-Python Manual

 		
 An Introduction to miriad-python

 		
 Loading and Processing MIRIAD Data

 		
 High-Level Access to MIRIAD Data: miriad

 		
 Visibility Datasets

 		
 Image Datasets

 		
 miriad API Reference

 		
 Low-Level Access to MIRIAD Data

 		
 mirtask API Reference

 		
 MIRIAD Data Utilities: mirtask.util

 		
 Antpols and Basepols

 		
 Utilities for Writing Tasks

 		
 Linetypes

 		
 Baselines

 		
 Polarizations

 		
 Julian Dates

 		
 Optimizers

 		
 Coordinate Manipulations

 		
 Fast-Fourier-Transform Imaging

 		
 Executing MIRIAD Tasks: mirexec

 		
 Creating Task Instances

 		
 Setting Task Parameters

 		
 Defining Your Own Task Classes

 		
 mirexec API Reference

 		
 Generic Task Class

 		
 Specific Task Classes

 		
 Setting up Subprocess Environment

 		
 Utility Classes

 		
 Writing Your Own MIRIAD Tasks

 		
 MIRIAD-Style Argument Handling: mirtask.keys

 		
 Handling keywords in miriad-python

 		
 Keyword Types

 		
 Keyword Formats

 		
 Integration with the UVDAT Subsystem

 		
 mirtask.keys API Reference

 		
 The UVDAT Subsystem for Reading UV Data: mirtask.uvdat

 		
 mirtask.uvdat API Reference

 		
 Utilities for Command-Line Programs: mirtask.cliutil

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

